Remarks on the pure critical exponent problem
نویسندگان
چکیده
منابع مشابه
Critical Remarks on “Mystical Aesthetics” The Case of Persian Painting
There are several texts pertaining to Perisian painting which explain its aesthetics on the basis of mysticism and the notion of imaginal world. This point of view bears some methodological problems. Some of the prominent scholars (Corbin, Burckhardt, Nasr, Ringgenberg et al.) refering to Ibn ‘Arabi’s mystical notions, have tried to show that the specific aesthetics o...
متن کاملOn the critical exponent of transversal matroids
Brylawski [2] has shown that loopless principal transversal matroids have critical exponent at most 2. Welsh [4] asks if a similar result holds for all transversal matroids. We answer in the affirmative by proving that all loopless transversal matroids have critical exponent at most 2. The terminology used here for matroids will in general follow Welsh 131. A rank r transversal matroid M is rep...
متن کاملProblem with critical Sobolev exponent and with weight
We consider the problem: −div(p∇u) = u + λu, u > 0 in Ω, u = 0 on ∂Ω. Where Ω is a bounded domain in IR, n ≥ 3, p : Ω̄ −→ IR is a given positive weight such that p ∈ H(Ω) ∩ C(Ω̄), λ is a real constant and q = 2n n−2 . We study the effect of the behavior of p near its minima and the impact of the geometry of domain on the existence of solutions for the above problem.
متن کاملAn Elliptic Problem with Critical Exponent and Positive Hardy Potential
where B1 = {x ∈ RN | |x| < 1} is the unit ball in RN (N ≥ 3), λ, μ > 0, 2∗ := 2N/(N − 2). When μ < 0, this problem has been considered by many authors recently (cf. [5, 6, 7, 8]). But when μ > 0, this problem has not been considered as far as we know. In fact, the existence of nontrivial solution for (1.1) when μ > 0 is an open problem which was imposed in [7]. In this paper, we get the followi...
متن کاملA Non-Linear problem involving critical Sobolev exponent
We study the non-linear minimization problem on H 0 (Ω) ⊂ L q with q = 2n n−2 : inf ‖u‖ Lq =1 ∫ Ω (1 + |x| |u|)|∇u|. We show that minimizers exist only in the range β < kn/q which corresponds to a dominant nonlinear term. On the contrary, the linear influence for β ≥ kn/q prevents their existence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1998
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700032275